Using R and H2O Isolation Forest to predict car battery failures. Carlos Kassab 2019-May-24 This is a study about what might be if car makers start using machine learning in our cars to predict falures. # Loading libraries suppressWarnings( suppressMessages( library ( h2o ) ) ) suppressWarnings( suppressMessages( library ( data.table ) ) ) suppressWarnings( suppressMessages( library ( plotly ) ) ) suppressWarnings( suppressMessages( library ( DT ) ) ) # Reading data file # Data from: https://www.kaggle.com/yunlevin/levin-vehicle-telematics dataFileName = "/Development/Analytics/AnomalyDetection/AutomovileFailurePrediction/v2.csv" carData = fread( dataFileName, skip= 0 , header = TRUE ) carBatteryData = data.table( TimeStamp = carData$timeStamp , BatteryVoltage = as.numeric( carData$battery ) ) rm(carData) # Data cleaning, filtering and conversion carBatteryData = na.omit( carBatteryData ) # Kee...
How to do things related to R, Installation, packages usage and algorithm samples.